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Abstract: High-temperature gas chromatography (HTGC) is an analytical technique employed in the 
petroleum industry for component separation. By incorporating chemometrics, HTGC data can be 
effectively utilized to predict various properties of crude oil. However, HTGC chromatograms generate 
a substantial number of variables, some of which may lack pertinent chemical information. 
Consequently, employing variable selection methods becomes crucial to reduce the number of variables 
and enhance the predictive capability of calibration models. In this study, the interval partial least 
squares (iPLS), synergy interval partial least squares (siPLS), and ordered predictors selection (OPS) 
methods were applied for variable selection to construct linear regression models. The main objective 
was to investigate the potential of these methods in predicting eight properties of crude oil: American 
Petroleum Institute (API) gravity, standardized kinematic viscosity at 50 °C (VISp), flash point (FP), 
Reid vapor pressure (RVP), micro carbon residue (MCR), saturates (SAT), aromatics (ARO), and polar 
(POL) content.  While all variable selection methods yielded satisfactory results, the OPS-PLS 
regression models consistently exhibited the best performance in estimating these properties, achieving 
root mean squared error of prediction (RMSEP) values of 1.244 for API, 0.029 for VISp, 15.356 °C for 
FP, 0.324 kPa for RVP, 0.629 wt% for MCR, 3.691 wt% for SAT, 2.939 wt% for ARO, and 3.374 wt% 
for POL. Variable selection demonstrated remarkable effectiveness, significantly improving the 
accuracy of the models, and allowing for the creation of concise models with a focused set of variables.  
 

Keywords: Variables selection; crude oil; HTGC; PLS; OPS. 
 

1 INTRODUCTION 
Gas chromatography (GC) has emerged as 
a widely utilized technique in the petroleum 
industry for analyzing crude oil 
(BLOMBERG; SCHOENMAKERS; 
BRINKMAN, 2002). It offers several 
advantages, such as high sensitivity, 
efficient column performance, speedy 
analysis, and compatibility with 
complementary methods like mass 
spectrometry (POLLO et al., 2021; ZENG 
et al., 2012). High-temperature gas 
chromatography (HTGC) enables the 
separation of compounds at temperatures as 
high as 720 °C, in accordance with the 
ASTM D7169 standard method (ASTM 
D7169-16, 2016). This distinctive 
characteristic makes HTGC highly suitable 
for estimating the true boiling point (TBP) 
curve through simulated distillation 
(SIMDIS) analysis. Unlike traditional TBP 
analysis, which necessitates 18 liters of 
crude oil and takes 24 hours to complete, 
SIMDIS utilizing HTGC only requires 5 
mL of the sample and can be accomplished 
within a mere 20 minutes. Consequently, 
HTGC presents significant savings in terms 
of time, sample volume, equipment, and 
labor when compared to the conventional 
TBP method (ASTM D7169-16, 2016; 

AUSTRICH; BUENROSTRO-
GONZALEZ; LIRA-GALEANA, 2015; 
DE ANDRADE FERREIRA; DE AQUINO 
NETO, 2005; ESPIÑOSA-PEN; 
FIGUEROA-GOMEZ; JIME´NEZ-CRUZ, 
2004; ZENG et al., 2012) 

While GC is a well-established 
technique for fuel analysis, its application in 
the field of chemometrics for crude oil and 
its derivatives remains relatively limited 
(CHUA et al., 2020; DASZYKOWSKI; 
WALCZAK, 2006; LI et al., 2019). 
However, there have been notable early 
endeavors to explore this approach. In 1987, 
Telnaes et al. utilized principal component 
analysis (PCA) in conjunction with GC to 
analyze the distribution of phenanthrene in 
36 crude oil samples (TELNAES et al., 
1987). Similarly, Hupp et al. (2008) 
employed PCA and Pearson product 
moment correlation (PPMC) using gas 
chromatography-mass spectrometry (GC-
MS) to differentiate 25 diesel samples, with 
a specific focus on aromatic compounds 
that exhibited significant discriminatory 
power (HUPP et al., 2008). Additionally, 
they identified the chemical components 
that contributed the most to the observed 
variance (HUPP et al., 2008). These studies 
demonstrate the potential of combining GC 
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with chemometrics for exploratory analysis 
and classification tasks. Moreover, this 
approach can be extended to quantification 
problems through the utilization of 
regression methods. 

In a similar vein, Nascimento et al. 
(2018) employed HTGC in conjunction 
with detailed hydrocarbon analysis (DHA) 
to estimate the true boiling point (TBP) 
curve and predict flash point and Reid vapor 
pressure using partial least squares (PLS) 
models (NASCIMENTO et al., 2018). By 
combining these chromatographic methods, 
the researchers were able to develop 
predictive models that closely resembled 
the outcomes of the standard method. This 
success can be attributed to the fact that 
each method offered a complementary 
elution range compared to the other, 
enhancing the overall predictive capabilities 
(NASCIMENTO et al., 2018). 

The combination of 
chromatography with chemometrics 
methodologies offers an alternative 
approach to analyzing chromatograms. This 
approach enables the extraction of a wide 
range of chemical information within a 
relatively short time and with reduced 
sample consumption when compared to 
standard physicochemical analysis 
methods. In this way, Medina et al. 
(MORALES-MEDINA; GUZMÁN, 2012), 
Rodrigues et al. (RODRIGUES et al., 
2018), and Rocha et al. (ROCHA; SHEEN, 
2019) used GC and HTGC to estimate 
physicochemical properties of biodiesel, 
crude oil, and its derivatives. Some 
physicochemical properties, such as 
saturates and aromatics content are directly 
related to chromatograms, whose cause-
effect relationship is intimately explained 
by HTGC, which, in turn, makes 
chemometrics modeling from HTGC data 
effective and reliable (MERDRIGNAC, I. 
ESPINAT, 2007; RODRIGUES et al., 
2018). 

Nevertheless, a single HTGC 
chromatogram of a crude oil sample can 
generate an overwhelming number of 
variables, often exceeding 4,000. In such 

cases, employing variable selection 
methods becomes crucial to streamline 
computational processing, enhance 
accuracy, and facilitate the interpretation of 
prediction models (DE ARAÚJO GOMES 
et al., 2022). By employing these methods, 
the aim is to select the most relevant 
information that is highly correlated with 
the property of interest (DE ARAÚJO 
GOMES et al., 2022). This approach helps 
to reduce the complexity of the dataset, 
enabling more efficient analysis and 
improving the overall performance of the 
prediction models. Variable selection 
methods like genetic algorithms 
(BALLABIO et al., 2008; GUO et al., 
2002), forward selection (BALLABIO et 
al., 2008), and LASSO (MA et al., 2018) are 
used to manage the vast amount of 
chromatographic data. Interval PLS (iPLS) 
(PEREIRA RAINHA et al., 2019; VIEIRA 
et al., 2019), synergy interval PLS (siPLS) 
(PEREIRA RAINHA et al., 2019; VIEIRA 
et al., 2019), and ordered predictors 
selection (OPS) (RIBEIRO et al., 2012; 
RIBEIRO; FERREIRA; SALVA, 2011; 
ROQUE et al., 2019) are emerging as 
effective variable selection approaches. 

This study focuses on utilizing PLS 
regression and variable selection methods, 
namely iPLS, siPLS, and OPS-PLS on 
HTGC dataset. The objective is to predict 
various physicochemical properties of 
crude oil samples, including American 
Petroleum Institute (API) gravity, 
standardized kinematic viscosity at 50 °C 
(VISp), Reid vapor pressure (RVP), flash 
point (FP), micro carbon residue (MCR), 
saturates (SAT), aromatics (ARO), and 
polar (POL) content. 

2 THEORETICAL BACKGROUNDS 
Variable selection plays a fundamental role 
in simplifying models, improving their 
interpretability, and predictive 
performance. These methods allow for the 
identification of the most relevant variables 
while discarding those that contribute little 
or have insignificant impact on the 
analysis's objective. This not only conserves 
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computational resources but also reduces 
the risk of overfitting, which can occur 
when models are excessively tuned to 
irrelevant variables. The choice of the 
appropriate method depends on the type of 
data, the modeling algorithm, and the 
analysis's goal, making variable selection a 
critical step in data preparation and the 
construction of statistical and machine 
learning models.  

The variable selection in 
chromatographic data is reported in the 
literature, such as genetic algorithm (GA) 
(ZHANG et al., 2018), forward selection 
(FS) (BALLABIO et al., 2008), variable 
importance in projection (VIP) (FARRÉS et 
al., 2015; PARK et al., 2013), selectivity 
ratio (SR) (FARRÉS et al., 2015), and least 
absolute shrinkage and selection operator 
(LASSO) (MA et al., 2018) for various 
purposes. To the best of our knowledge 
there are few works with application of 
variable selection in CG data for crude oil. 

Other methods such as interval 
partial least squares (iPLS) and synergy 
interval partial least squares (siPLS) are 
already becoming the main algorithms for 
variable selection, based on selecting the 
intervals that generate the most accurate 
models (DE PAULO et al., 2022; PEREIRA 
RAINHA et al., 2019). In this way, a 
smaller set of variables is selected and used 
for regression (DE ARAÚJO GOMES et 
al., 2022; MEHMOOD; SÆBØ; LILAND, 
2020). However, selecting intervals can 
often include variables without chemical 
significance or noise, producing less 
accurate models. To overcome this, it can be 
select discrete variables, rather than 
intervals, in the entire range of the 
chromatogram. 

Ordered predictors selection (OPS) 
is a variable selection algorithm developed 
by Teófilo et al. in 2008 (TEÓFILO; 
MARTINS; FERREIRA, 2009). The OPS 
resize the original data matrix in descending 
order of importance. The variables are 
conditioned to a vector that carries 
information about the property of interest 
and shows which variables are the most 

important for the property (TEÓFILO; 
MARTINS; FERREIRA, 2009). Ribeiro et 
al. applied PLS regression on GC data to 
estimate sensory attributes of Arabica 
coffee and OPS algorithm to improve the 
prediction by selecting peaks for some 
compounds (RIBEIRO; FERREIRA; 
SALVA, 2011). Besides that, OPS have 
been widely applied in data set from QSAR 
(quantitative structure-activity relationship) 
(ROQUE et al., 2019; TEÓFILO; 
MARTINS; FERREIRA, 2009), nuclear 
magnetic resonance (DE PAULO et al., 
2020, 2022, 2023; ROQUE et al., 2019), 
Raman (ROQUE et al., 2019; TEÓFILO; 
MARTINS; FERREIRA, 2009), infrared 
(CALIARI et al., 2017; FERREIRA et al., 
2018; ROQUE et al., 2019; TEÓFILO; 
MARTINS; FERREIRA, 2009) and 
ultraviolet spectroscopy (ROQUE et al., 
2019; ROQUE; DIAS; TEÓFILO, 2017), 
X-ray fluorescence (ROQUE et al., 2019; 
TEÓFILO; MARTINS; FERREIRA, 2009) 
and mass spectrometry (ROQUE et al., 
2019; TEÓFILO; MARTINS; FERREIRA, 
2009), voltammetry (ROQUE et al., 2019; 
TEÓFILO; MARTINS; FERREIRA, 
2009), and GC (RIBEIRO et al., 2012; 
ROQUE et al., 2019; TEÓFILO; 
MARTINS; FERREIRA, 2009) in 
pharmaceutical, food and fuel areas.  

3 METHODOLOGICAL 
PROCESSES/MATERIALS AND 
METHODS 
3.1. Physicochemical analysis.  

In this paper we used 100 crude oils 
samples from Brazilian coast sedimentary 
basin. API gravity was determined by the 
standard method ISO 12185 (“ISO 12185. 
Crude petroleum and petroleum products – 
determination of density – oscillating U-
tube method.”, 1996) following Equation 1, 
where 𝜌 is the specific gravity of the 
sample. 
API = 	 !"!,$

%
− 131,5                               (1) 

Kinematic viscosity (KVIS) at 50 °C 
was measured by ASTM D7042 (ASTM 
D7042., 2013) standard method and the 
VISp was obtained by log treatment on 
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KVIS according to Equation 2 (DIAS; 
AGUIAR, 2011). 
	VIS& = 𝑙𝑜𝑔(𝑙𝑜𝑔(KVIS + 0.7))               (2) 

RVP was obtained according to 
ASTM D323 (ASTM D323-15A, 2015). FP 
was determined following ISO 13736 (ISO 
13736, 2006). MCR was measured 
following ASTM D4530 (ASTM 4530, 
2015) standard method. SAT, ARO, and 
POL content were classified by ASTM 
D2549-02 (ASTM D2549, 2002) modified 
as described in previous works 
(FILGUEIRAS et al., 2016; RODRIGUES 
et al., 2018) using supercritical fluid 
chromatography/thin layer 
chromatography-flame ionization detector 
(SFC/TLC-FID). 

 
3.2. Chromatographic analysis. 

The HTGC analysis followed the 
ASTM D7169 (ASTM D7169-16, 2016) 
with extension of calibration (C5-C120) of n-
paraffins. A chromatograph from Agilent 
Technologies, model 6890N was used. The 
equipment presented automatic injection 
system by programmable temperature; 
metallic capillary column, coated internally 
with polydimethylsiloxane of 5 m x 0.53 
mm in internal diameter and 0.09-0.15 µm 
of stationary phase thickness; and flame 
ionization detector (FID). The assay was 
carried out in the followed chromatographic 
conditions: initial oven temperature at −20 
°C, with programing from 10 ºC∙min−1 to 
430 °C, maintaining this temperature by 2 
min; injector temperature at 430 °C and 
detector temperature at 435 °C; helium as 
carrier gas with a flow rate of 20 mL∙min−1. 

All samples were diluted in carbon 
dissulfide (2 wt%) and injected in the 
column with a ramp of 50°C–430°C at a rate 
of 15°C·min−1. The mixture of C5-C28 light 
n-paraffins standard and the mixture of C30-
C120 heavy n-paraffins standard were used 
for the retention times calibration 
(Analytical Controls). The chromatograms 
were obtained in quadruplicate and the data 
was processed by Agilent Technologies’ 
GC ChemStation software. 

 

3.3. Data analysis. 
The chromatographic data were used 

to build the matrix X, while 
physicochemical analysis provided the y 
vectors. The Icoshift (TOMASI; 
SAVORANI; ENGELSEN, 2011) 
algorithm was used to align 
chromatograms. Samples were split into 
70% for calibration set and 30% for 
prediction set by Kennard-Stone algorithm 
(KENNARD; STONE, 1969). Before that, 
data set was preprocessed using one of these 
methods: normalization (NORM), mean 
centering (CENTER), autoscaling (AUTO), 
first order derivative (DERIV), and 
standard normal variation (SNV) methods 
(RINNAN; BERG; ENGELSEN, 2009). 
All chemometrics steps were carried out in 
the software MATLAB® R2013a (The 
Mathworks, Natick, USA). 

 
3.3.1. Variables selection methods.  

The iPLS, siPLS, and OPS algorithms 
were used to select variables, reducing the 
chromatographic matrix. The intervals with 
the lower error in both iPLS and siPLS 
modeling were selected to build a 
regression model. In each model the 
optimal number of latent variables (LVs), 
which minimize the root mean squared error 
of cross-validation (RMSECV), was 
selected (DE PAULO et al., 2022; 
PEREIRA RAINHA et al., 2019). 

For OPS, it was needed to define 
some parameters to optimize the algorithm. 
First, the initial number of latent variables 
(hOPS) was used to build an informative 
vector that was used to sort the set of 
variables (MARTINS; FERREIRA, 2013; 
TEÓFILO; MARTINS; FERREIRA, 
2009). The vectors used in this paper were 
the regression vector, obtained when a first 
PLS model is made with all variables set 
following Equation 3, where y is the 
dependent variable, i.e., physicochemical 
data, X is the independent variable 
(retention time from HTGC chromatogram) 
and b'()  is the regression coefficient.   
y = 	X · 	b'() 		                                           (3) 
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The correlation vector was built by 
the correlation between a variable in matrix 
X and its corresponding variable in vector y, 
measured following the Equation 4, where 
𝑟 is the correlation coefficient,	𝐼 is the 
number of samples, X*+  and y* with 
subscript 𝑎, are the autoscaled matrix and 
vector for independent and dependent 
variables, respectively. 
   𝑟 = 	 (X*+ · y*) (𝐼 − 1)⁄                             (4) 

Finally, the product vector is made by 
the product between regression and 
correlation vectors. This vector carries a lot 
of information from data set and was the 
major vector used to resize the X matrix. 
After obtaining the vector, OPS algorithm 
needs two subsets named window and 
increment. The first one is the initial 
number of variables in the current matrix 
and the second one is the set of variables 
that will be added to the window by the OPS 
algorithm. The percentage of variables that 
will be analyzed by the algorithm and the 
number of variables removed in cross-
validation step are chosen together 
(MARTINS; FERREIRA, 2013; 
TEÓFILO; MARTINS; FERREIRA, 2009; 
VALE et al., 2018).  

The informative vector is compared to 
original data set and according to intensity 
of the vector signal, the variables are 
ordered by descending importance 
(TEÓFILO; MARTINS; FERREIRA, 
2009). Thus, the window and increments 
subsets are determined and PLS model is 
built to estimate cross-validation 
parameters. PLS regression is performed 
until all increment subsets are analyzed. 
The new subset is chosen based on the PLS 
model with the lowest RMSECV values 
(TEÓFILO; MARTINS; FERREIRA, 
2009). 

 
3.3.2. PLS modeling.  

The intervals selected by iPLS and 
siPLS, and the new data set chosen by the 
OPS algorithm, were used to build PLS 
regression models. For comparison 
purposes, full chromatograms were also 
used to build models.  

To avoid overfitting to the calibration 
data, the cross-validation method k-fold 
was applied during calibration with PLS 
modeling (LILAND; STEFANSSON; 
INDAHL, 2020). Thus, LVs were selected 
for modeling optimization. After that, the 
evaluation parameters were calculated for 
the built PLS models. To evaluate which 
model presented the best adjust and 
prediction capacity, the root mean squared 
error of calibration (RMSEC) and 
prediction (RMSEP) were used 
(OLIVIERI, 2015). The parameters were 
calculated according to Equations 5 and 6, 
where 𝑦, is the property reference value, 𝑦B, 
is the property value predicted by the 
model, 𝑦C,, is the mean reference value, 𝑛𝑐𝑎𝑙 
is the number of samples used for 
calibration, and 𝑛𝑝𝑟𝑒𝑑 is the number of 
samples used for prediction. Besides, 
coefficients of determination (R2) were 
calculated using Equation 7 for calibration 
and prediction as well (OLIVIERI, 2014). 

𝑅𝑀𝑆𝐸𝐶 = N∑ (.!/.0!)"

23*4/56/!
23*4
,7!                       (5)  

𝑅𝑀𝑆𝐸𝑃 = N∑ (.!/.0!)"

2&89:
2&89:
,7!                       (6)  

  
𝑅; = 1 − ∑ (.!/.0!)"!

∑ (.!/ȳ!)"!
                                          (7) 

 

4 RESULTS AND DISCUSSION 
The methodology of multivariate data 
analysis combined to HTGC 
chromatograms allows the identification of 
crude oil features with high accuracy. It can 
dramatically reduce standard crude oil 
characterization methods by saving time 
and volume. 
4.1. Physicochemical properties.  

Figure 1 shows the range of each 
property for all samples. These oil samples 
presented API gravity ranging from 11.4 to 
54.0 API as can be seen in Figure 1a. Many 
samples had API gravity higher than 31, 
which characterizes light oils, according to 
the API classification (SPEIGHT, 2015). 
Some of them showed API between 22 and 
31, which characterizes intermediary oils. A 
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few samples are classified as heavy crude 
oils (API lower than 22). 

 The VISp showed values with high 
distribution (Figure 1b). This property 
mainly affects oil handling and 
transportation. Viscosity, as well as API 
gravity, is one of the main physicochemical 
properties for assessing oil quality in 
industry (SPEIGHT, 2015). Due to its 
relationship with temperature, it is 
necessary to improve the technology and 
equipment used in transportation of oil to 
avoid flow issues in different temperatures. 
Thus, the process of estimating the property 
in any temperature enables decision-making 
process regarding transportation problems 
(RIAZI, 2007; SPEIGHT, 2015). 

The distribution of RVP values of our 
samples (Figure 1c) is characteristic of 
Brazilian oils (less than 70 kPa) 
(BRAZILIAN PETROLEUM, NATURAL 
GAS; (ANP), 2016). Some samples have 
RVP below 38 kPa, characteristic value of 
aviation gasoline (38 to 49 kPa). Other 
samples ranged from 45 to 54 kPa, values 
found in commercial automotive gasoline 
(45 kPa to 69 kPa). No sample presented 
RVP above 70 kPa, characteristic value of 
condensed gas.  

Flash point (FP) (Figure 1d) of a 
hydrocarbon or a fuel is defined as the 
lowest temperature at which its vapor 
pressure is sufficient to produce the needed 
vapor for spontaneous ignition with the air 
and an external heat source, such as a spark 
or a flame (RIAZI, 2007; SPEIGHT, 2015). 
FP is related to the volatility of a fuel and, 
therefore, the presence of light and volatile 
components. FP indicates the maximum 
temperature that it can be stored without 
serious fire hazard. It is directly related to 
the safe storage and handling of such crude 
oil products (RIAZI, 2007; SPEIGHT, 
2015). 

Another important property is SAP, 
usually used for petroleum assessment. As 
can be seen Figure 1e, saturated 
components are the most abundant (up to 
60%), being composed of normal chain 
(paraffins), branched (isoparaffins) and 

cyclic (naphthenic) hydrocarbons (RIAZI, 
2007; SPEIGHT, 2015). ARO, in turn, 
represented around 30% of the oil 
composition and it is formed by single and 
polyaromatic carbon rings in structures 
(Figure 1f) (RIAZI, 2007; SPEIGHT, 
2015). POL components represent around 
10% of the oil composition, as can be seen 
in Figure 1g (RIAZI, 2007; SPEIGHT, 
2015). This class is predominantly polar, 
due to heteroatoms, such as O, N, and S, 
presented in this structure (RIAZI, 2007; 
SPEIGHT, 2015). 

Knowing oil’s composition, it is 
possible to determine its quality and 
economic value. Oils composed mainly by 
saturates and aromatic hydrocarbons have 
higher economic value, because they are 
easier to refine, since they generally have 
low molecular weight. On the other hand, 
oils with high polar content are usually 
more undervalued as they present greater 
challenges during refining for industry. 
SAP classification is very important in 
stability studies during oil transportation, 
because precipitation of organic compounds 
in refinery pipelines is related to the 
proportion and interaction between these 
classes (MERDRIGNAC, I. ESPINAT, 
2007; RIAZI, 2007; SPEIGHT, 2015). The 
physicochemical properties of oils vary 
considerably depending on the constituent 
substances of each class. MCR indicates the 
number of lubricant oils that can be 
produced in the refining process. 
Furthermore, this parameter also indicates 
the possibility of deposit formation in 
injectors and engines by the residue 
generated during the combustion of a fuel 
(DUARTE et al., 2016). In our sample set, 
most samples presented MCR between 0 
and 5 wt%, and few samples between 10 
and 15 wt% (Figure 1h). 
 



 

	

8 
 

v.10 n.1 2024 

Figure 1. Histograms of sample distribution for API gravity (a), VISp (b), RVP (c), FP (d) SAT 
(e), ARO (f), POL (g), and MCR (d). 

 
Figure S1 shows the correlation 

between the studied properties. API gravity 
is directly correlated with SAT, which was 
already expected, since the higher SAT, the 
higher the paraffin content and, therefore, 
the lighter the oil. API is also direct, but 
less, correlated with RVP. All the other 
properties are indirectly correlated with 
API, especially MCR, ARO, and POL. Both 
MCR and FP are inversely correlated with 
SAT and directly correlated with ARO and 
POL. The values of the correlation 
coefficients between each property can be 
found in table S1 of the supplementary 
material. 
4.2. HTGC. 

Figure S2 shows HTGC 
chromatograms for a light, an intermediary, 
and a heavy oil sample. The major 
difference between the chromatograms is in 
the first minutes of retention, where we can 
see the predominance of n-alkanes peaks for 
the light and intermediate samples, which 
does not occur for the heavy sample. From 
light to heavy samples, there is a decrease 
of n-alkanes quantity, which reduces the 
peak intensity in the first minutes. The 
profile shown of the heavy oil 
chromatogram is the profile of biodegraded 
oil, whose main characteristic is the lower 
peak intensity of n-alkanes (LARTER et al., 
2012; SILVA et al., 2020). 

4.3. Variables selected. 
Figure S3 shows HTGC 

chromatogram versus OPS vector graphics. 
The regression and correlation vectors were 
used to build a product vector. This last one 
shows similarities to regression vector 
which makes it possible that the most 
importance on it comes from regression 
vector. 

The peaks with higher intensity are 
mostly in the first thousand variables and 
some other ones after two thousand. Those 
chromatogram regions are primarily due to 
light and intermediary n-paraffin with 
chains ranging up to n-C30, approximately 
(RIAZI, 2007). Figure 2A shows the sets of 
variables selected in OPS algorithm for API 
gravity. OPS selected 450 variables 
between 0 to 9 minutes (min), 11 to 12 min, 
14 to 20 min and in 46 min, which 
corresponds retention time to compounds n-
C5 to n-C18, n-C22 to n-C24, n-C30 to n-C48, 
and above n-C100 respectively (ASTM 
D7169-16, 2016). These regions are 
represented by light, intermediary and 
heavy compounds, respectively. The iPLS 
model selected the retention times from 0 to 
2 min (n-C5 to n-C9), 7 to 9 min (n-C16 to n-
C18), 14 to 16 min (n-C28 to n-C34), and 26 
to 28 min (n-C78 to n-C94), totalizing 940 
variables. siPLS selected the variables from 
0 to 18 minutes (n-C5 to n-C40), totalizing 
1,880 variables (ASTM D7169-16, 2016).  
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For VISp, OPS selected 4,230 
variables throughout the entire retention 
time range (from 0 to 46 min), as can be 
seen in Figure 2B. A total of 940 variables 
were selected by iPLS from 0 to 4 min, 7 to 
9 min, and 23 to 25 min from n-C5 to n-C12, 
n-C15 to n-C18, and n-C62 to n-C72, 
respectively. Thus, siPLS selected 1,880 
variables in retention time from 0 to 18 min 

(n-C5 to n-C40). For FP, iPLS selected 
compounds of type n-C5 to n-C18 (0 to 9 
min), siPLS selected compounds of type n-
C12 to above n-C100+ (4 to 37 min), and OPS 
selected compounds of type n-C5 to n-C100+ 
(0 to 31 min and 38 to 44 min) (Figure 2C). 
It selected a total of 940 variables for iPLS, 
3,290 for siPLS, and 550 for OPS (ASTM 
D7169-16, 2016). 

 
Figure 2. Sets of variables selected in OPS algorithm for API (a), VISp (b), FP (c), and RVP 
(d). 

RVP was related to compounds from 
0 to 4 min (n-C5 to n-C12) and 23 to 25 min 
(n-C62 to n-C72,) using iPLS. The siPLS 
model selected 23 to 42 min (n-C62 to n-
C100+), 0 to 20 min, that is, n-C5 to n-C48 
(Figure 2D). It was selected a total of 705 
variables for iPLS, 1,880 for siPLS, and 400 
for OPS (ASTM D7169-16, 2016). 

Figure 3A, 3B, 3C, and 3D show the 
variables selected by OPS algorithm, 
respectively, for SAT, ARO, POL, and 
MCR. Variables carrying information of 
saturated compounds were selected in 
retention times by iPLS between 0 and 4 
min, 7 and 9 min and between 23 and 28 
min (n-C5 to n-C12, n-C16 to n-C18 and n-C62 
to n-C94, respectively). siPLS selected 
variables from 0 to 14 min (n-C5 to n-C30) 
and OPS selected variables from 0 to 15 min 
and18 to 20 min (n-C5 to n-C32, n-C40 to n-
C48, respectively) (Figure 3A). It was 
selected a total of 1,175 variables for iPLS, 
1,410 for siPLS, and 450 for OPS. The 
selected regions are related to hydrocarbons 

formed by chains lower than C50, 
demonstrating that the class is mainly 
conditioned to these compounds. According 
to Zeng et al. branched n-alkanes have a low 
boiling point compared to equivalent but 
normal chain n-alkanes (ZENG et al., 
2012). Thus, the selection of some variables 
at lower boiling points indicates greater 
importance of branched n-alkanes for 
chemometrics modeling (ASTM D7169-16, 
2016). 

Retention times related to aromatics 
compounds (Figure 3B) were selected by 
iPLS from 0 to 28 min (n-C5 to n-C94), by 
siPLS from 0 to 18 min (n-C5 to n-C40), and 
by OPS from 0 to 41 min (n-C5 to n-C100+), 
totalizing 2,820, 1,880, and 250 variables, 
respectively. To estimate POL (Figure 3C), 
3,995 variables were selected by iPLS from 
0 to 9 min and from 16 to 47 min (n-C5 to 
n-C18 and n-C34 to n-C100+, respectively), 
3,290 variables were selected by siPLS 
from 4 to 47 min (n-C12 to n-C100+), and 250 
variables were selected by OPS at 7 min and 
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from 28 to 43 min (n-C16, n-C62 to n- C100+). 
For MCR (Figure 3D), iPLS selected 
regions from 0 to 2 min, 7 to 11 min and 23 
to 25 min (n-C5 to n-C8, n-C16 to n-C22 and 
n-C62 to n-C94), siPLS selected regions from 
23 to 32 min (n-C62 to n- C100+), and OPS 

selected from 0 to 21 min and at 46 min (n-
C5 to n-C52 and n- C100+). iPLS, siPLS and 
OPS selected a total of 940, 940, and 600 
variables for MCR, respectively (ASTM 
D7169-16, 2016). 

 
Figure 3. Sets of variables selected in OPS algorithm for SAT (a), ARO (b), POL (c), and MCR 
(d). 
4.4. Regression models. 

iPLS, siPLS, OPS-PLS, and PLS 
models with the full chromatogram were 
built to predict crude oil physicochemical 
properties. The main parameters for each 
model are shown in Table 1. The number of 
latent variables ranged from 3 to 8, while 

autoscaling, normalization and SNV 
methods predominated in the data 
preprocessing methods. The higher the R2 
value (closer to 1) and the lower the 
RMSEC and RMSEP values, the higher the 
model quality.  

 
Table 1. Statistical parameters of PLS, iPLS, siPLS, and OPS-PLS models for API gravity, 

VISp, RVP, FP, SAT, ARO, POL, and MCR. 
 

Parameters 

Property Model Variable Pretreata LVb RMSEC (wt%) RMSEP (wt%) R2c R2p 

API 

PLS 4,700 AUTO 6 1.71 1.15 0.96 0.94 
iPLS 940 AUTO  6 1.59 1.34 0.97 0.93 
siPLS 1,880 AUTO 8 1.37 1.48 0.98 0.91 

OPS-PLS 450 AUTO  7 1.41 1.24 0.97 0.93 

VISp 

PLS 4,700 SNV 4 0.07 0.06 0.94 0.89 
iPLS 940 SNV 3 0.09 0.08 0.87 0.84 
siPLS 1,880 AUTO 6 0.05 0.03 0.96 0.93 

OPS-PLS 4,230 AUTO 5 0.05 0.03 0.96 0.94 

RVP 
PLS 4,700 NORM 4 0.41 0.37 0.99 0.99 
iPLS 705 NORM 8 0.24 0.32 0.99 0.99 
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siPLS 1,880 AUTO 3 0.49 0.48 0.99 0.99 
OPS-PLS 400 NORM 5 0.31 0.32 0.99 0.99 

FP 

PLS 4,700 AUTO 7 7.24 16.34 0.82 0.72 
iPLS 940 NORM 6 8.57 16.71 0.75 0.65 
siPLS 3,290 AUTO 7 7.34 16.99 0.82 0.68 

OPS-PLS 550 AUTO 7 7.99 15.36 0.79 0.79 

SAT 

PLS 4,700 SNV 3 6.01 3.73 0.82 0.73 
iPLS 1,175 SNV 3 6.93 3.78 0.76 0.73 
siPLS 1,410 SNV 3 7.17 4.77 0.75 0.58 

OPS-PLS 450 NORM 3 6.3 3.69 0.8 0.76 

ARO 

PLS 4,700 SNV 3 4 3.53 0.61 0.7 
iPLS 2,820 SNV 4 3.99 3.57 0.62 0.73 
siPLS 1,880 SNV 3 4.27 3.72 0.56 0.71 

OPS-PLS 250 SNV 7 3.72 2.94 0.69 0.8 

POL 

PLS 4,700 SNV 4 4.22 5.15 0.78 0.64 
iPLS 3,995 SNV 5 4 5.39 0.8 0.6 
siPLS 3,290 SNV 3 5.23 4.03 0.64 0.79 

OPS-PLS 250 SNV 7 4.14 3.37 0.79 0.86 

MCR 

PLS 4,700 NORM 5 1.06 0.7 0.78 0.85 
iPLS 940 NORM 6 0.9 0.79 0.84 0.82 
siPLS 940 NORM 6 1.2 0.8 0.72 0.83 

OPS-PLS 600 NORM 3 1.17 0.63 0.72 0.88 
Source: The authors. 

For API gravity, the PLS model from 
the full chromatogram provided the lowest 
RMSEP (1.15 API), however, OPS showed 
comparable results (RMSEP 1.24 API), 
using a smaller number of variables. The 
iPLS and siPLS models also presented 
RMSEP values closer to OPS and PLS. 
Medina et al. predicted the API gravity in 
crude oil using CG data and PLS regression 
(MORALES-MEDINA; GUZMÁN, 2012). 
They reported an R2p equal to 0.82 and 
RMSEP equal to 1.4 API. Rodrigues et al. 
also used HTCG to estimate API gravity, 
obtaining a R2p of 0.951 and a RMSEP of 
1.7 (RODRIGUES et al., 2018). 

Medina et al. also predicted kinematic 
viscosity, obtaining a R2p of 0.89 and a 
RMSEP of 2.6 mm2·s−1 (MORALES-
MEDINA; GUZMÁN, 2012). Rodrigues et 
al. reported a RMSEP of 0.31 mm2·s−1 and 
a R2p of 0.911 for kinematic viscosity at 50 
°C (RODRIGUES et al., 2018). In this 

study, we estimated this property with a 
RMSEP equal to 0.029 and a R2p equal to 
0.94, using the OPS-PLS method. For VISP 
modeling, OPS-PLS selected almost all 
chromatographic variables (4,230 
variables) but provided the best model 
among all obtained models. 

For RVP, the lowest values of 
RMSEP were achieved using iPLS and 
OPS-PLS methods (0.322 kPa and 0.324 
kPa, respectively) as well as a R2p of 0.96 in 
both cases. Nascimento et al. used PLS in 
HTGC to predict RVP, reporting a R2p of 
0.99 and a RMSEP of 0.4 kPa 
(NASCIMENTO et al., 2018). This 
suggests that using several variables about 
ten times smaller (400 variables) can 
produce comparable results to using full 
data set (4,700). 

For modeling the FP property, 
Nascimento et al. applied PLS in HTGC and 
DHA data and applied data fusion strategy 



 

	

12 
 

v.10 n.1 2024 

(NASCIMENTO et al., 2018). The authors 
reported R2p values of 0.53, 0.69, 0.73, 0.82 
and 0.89, as well as RMSEP values of 8.0 
°C, 17.2 °C, 12.4 °C, 11.6 °C and 5.3 °C 
from DHA1, HTGC2, HTGC1, DHA2, and 
data fusion model, respectively. Here, our 
best model, OPS-PLS, showed RMSEP of 
15.356 °C and R2p of 0.78 using only 550 
variables. between the two chromatography 
techniques can improve the ability to 
predict FP. The advantage of data fusion in 
this case lies in the fact that low chain 
compounds can evaporate during sample 
preparation before HTGC chromatograms 
register them. Adding DHA data, by data 
fusion strategies, can improve results, since 
DHA increases the resolution up to n-C14 
compounds allowing the addition of 
information on lower chain compounds. 

Rodrigues et al. also predicted CR 
with a RMSEP of 0.83 wt% and a R2 of 
0.768 (RODRIGUES et al., 2018).We 
obtained a RMSEP value of 0.629 wt% and 
a R2 of 0.88 for MCR. This clearly indicates 
a growth in both linearity and accuracy of 
the prediction model as the variables 
decrease in selection with the OPS. The 
other methods, PLS-full, iPLS, and siPLS 
showed RMSEP values above 0.7 wt% and 
R2 above 0.81. 

SAT was also predicted by Rodrigues 
et al. with a RMSEP of 6.76 wt% and a R2p 
of 0.692 (RODRIGUES et al., 2018). In this 
study, we obtained a RMSEP of 3.691 wt% 
and a R2p of 0.759, using a small data set of 
450 variables in OPS-PLS. Rodrigues et al. 
reached a RMSEP of 4.05 wt% and a R2p of 
0.505 for ARO while we obtained a RMSEP 
and R2p values of 2.939 wt% and 0.796, 
respectively (RODRIGUES et al., 2018). 
There are no studies reporting the estimate 
of POL using HTGC in oil, perhaps due to 
the difficulty of explaining it, since the 
measure is indirect. Filgueiras et al. 
determined POL in crude oil using nuclear 
magnetic resonance (13C NMR) with PLS 
and SVR (support vector regression) 
associated with the genetic algorithm (GA) 

(FILGUEIRAS et al., 2016). The GA-PLS 
model presented RMSEP equal to 4.0 wt% 
and R2p to 0.778, while GA-SVR model 
presented RMSEP equal to 3.7 wt% and R2p 
to 0.774. For POL prediction, OPS-PLS 
provided the best model, using 250 
variables, obtaining an RMSEP value of 
3.374 wt% and R2p of 0.86. Although 13C-
NMR can provide important structural 
information of crude oil compounds, the use 
of HTGC and variable selection proved to 
generate comparable results for predicting 
this property (MERDRIGNAC, I. 
ESPINAT, 2007; RIAZI, 2007; SPEIGHT, 
2015). 

Figure 4 and 5 shows graphics with 
the properties values from the reference 
method (ASTM) versus values predicted by 
the OPS-PLS models. As stated earlier, all 
properties presented high R2 values, which 
demonstrates the ability of the proposed 
method. Most of the samples fitted well to 
the model and a few of them did not. The 
outlier detection was carried out through the 
evaluation of residues and no one outlier 
was detected. In general, iPLS and siPLS 
models showed great applicability to 
estimate most of the proposed properties. 
These variable selection methods have been 
constantly described in literature and are 
great tools for reducing the data set and 
obtaining models with better predictive 
ability than using the entire 
chromatographic or spectral information. 
However, the selected variables must be 
truly representative for the property of 
interest in the case of iPLS model or they 
must have high synergism with each other 
in the case of siPLS model. OPS algorithm 
presented the best models for predicting 
properties, while the other ones showed 
comparable or less effective models than 
OPS-PLS. This may be because the OPS 
algorithm rearranges the chromatographic 
matrix according to the individual 
importance of each variable for the 
property.  
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Figure 4. Graph of the OPS-PLS regression models for API (A), VISp (B), FP (C) in °C, and 
RVP (D) in kPa. 
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Figure 5. Graph of the OPS-PLS regression models for SAT (A), ARO (B), POL (C), and MCR 
(D) with values in wt%. 

5 CONCLUSIONS 
In this study, we employed PLS, iPLS, 
siPLS, and OPS-PLS models to predict 
eight physicochemical properties of crude 
oil. The OPS-PLS models demonstrated 
superior performance in accurately 
estimating standardized kinematic viscosity 
(RMSEP of 0.029), flash point (RMSEP of 
15.356 °C), Reid vapor pressure (RMSEP 
of 0.324 kPa), micro carbon residue 
(RMSEP of 0.629 wt%), saturates (RMSEP 
of 3.691 wt%), aromatics (RMSEP of 2.939 
wt%), and polar content (RMSEP of 3.374 
wt%). For API gravity, the PLS-full model 
exhibited the lowest RMSEP (1.15), 
although the OPS-PLS model (RMSEP of 
1.24) yielded comparable results while 
utilizing a smaller number of variables. 
Additionally, iPLS for RVP (RMSEP of 
0.322 kPa) showed similar performance to 

OPS-PLS for RVP. Notably, for all 
properties, we were able to identify the 
selected peaks in the chromatograms, 
providing insights into the relevant 
compounds associated with each retention 
time. This suggests that the OPS algorithm 
effectively identifies and selects the most 
significant regions for all properties, 
thereby improving the predictive capacity 
of the models. 
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SUPPLEMENTARY MATERIAL 

 
 
Figure S1. Correlation graph of the physicochemical properties. 
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Figure S2. Examples of HTGC chromatograms for a light (a), intermediary (b), and a heavy 

(c) oil sample. 
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Figure S3. HTGC chromatogram vs OPS vector graphics. 
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Figure S4. Graphics of reference vs predicted values of the PLS, iPLS, siPLS, OPS-PLS models 

for API, VIS, RVP, and FP. 
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Figure S5. Graphics of reference vs predicted values of the PLS, iPLS, siPLS, OPS-PLS models 

for SAT, ARO, POL, and MCR. 
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Figure S6. Variable selection plots of the iPLS, siPLS, OPS-PLS models for API, VIS, RVP, 

and FP. 
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Figure S7. Variable selection plots of the iPLS, siPLS, OPS-PLS models for SAT, ARO, POL, 

and MCR. 
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Table S1. Coefficients of correlation between the properties studied. 

 API KVIS RVP FP MCR SAT ARO POL 
API 1.00 -0.60 0.36 -0.57 -0.86 0.88 -0.64 -0.74 

KVIS -0.60 1.00 -0.45 0.67 0.65 -0.51 0.24 0.53 
RVP 0.36 -0.45 1.00 -0.64 -0.22 0.19 -0.26 -0.08 

FP -0.57 0.67 -0,.64 1.00 0.43 -0.38 0.22 0.36 
MCR -0.86 0.65 -0.22 0.43 1.00 -0.83 0.47 0.79 
SAT 0.88 -0.51 0.19 -0.38 -0.83 1.00 -0.69 -0.87 
ARO -0.64 0.24 -0.26 0.22 0.47 -0.69 1.00 0.24 
POL -0.74 0.53 -0.08 0.36 0.79 -0.87 0.24 1.00 

 

 

 

 
 
 


